
© 2019, Colin McClure. All rights reserved

Colin’s How To… R

Good job you got some data!

Now to think about analysing it the right way to see if it shows anything…

Why R & not Excel/SPSS? ‘Cause the skills are invaluable in many growing sectors today! & it’s FREE!

In this Guide, I will be giving you scripts to use R effectively to manipulate data, and to perform (&

understand the read-outs!) of statistical tests. I would HIGHLY recommend using RStudio (which runs

R through its User-Interface) rather than using R directly. Download R first, and then RStudio, but

after this you only need to load RStudio and use this.

Actual scripts are either given in the boxes below or coloured in blue to separate them from notes:

R scripts in here

Read-Outs from R are highlighted in grey.

Any notes beginning with a # will be ignored if written into R (it sees # as a ‘stop reading’ sign).

The data used for this Guide can be downloaded here. You can download it, load it into R, and go

through the various data manipulation / stats tests using the code provided. Here’s a screenshot:

Our Response (i.e. Dependent) Variables are in blue; Categorical Independent Variables in yellow;

Continuous Independent Variables in red; Random Effect in green

NOTE: This document describes how to use R to run particular tests, how to read outputs, and (to a

degree) how to plot data. If you’re still deciding which statistical test if appropriate for you, read my

Colin’s How To Stats guide which might be more helpful

https://www.youtube.com/watch?v=u94oFWZCTCU
https://rstudio.com/products/rstudio/download/
https://www.r-project.org/
https://drflyguy.weebly.com/uploads/1/0/4/8/104802779/data.csv

© 2019, Colin McClure. All rights reserved

Contents

Getting Started with R

- RStudio Basics

- Configuring your Data for R

- Loading Data into R

- Setting up Variables Properly

- Subsetting your Data

- Understanding your Data

Simple Stats Tests

- Normality

- Binomial Test

- Proportionality Test

- Wilcox Test

Single-Variable, Two-Level Tests

- Discrete Variable (t-test, Wilcox)

- Continuous Variable (Correlation, Regression)

Visualising Data

- Discrete Variable (Box plot, Histograms)

- Continuous Variable (Scatterplots, Line-of-best-fit)

Multi-Variable, >Two-Level Tests

- >Two-level Tests (One-Way ANOVA, Kruskal-Wallis, Post-hoc Analysis)

- Multi-Variable Tests (Two-Way ANOVA, Generalised Linear Models)

- Comparing Multiple Variables (Partial F Statistics)

- Mixed Effects (Linear Mixed Models)

Survival Analysis

- Formatting Data (R function to transpose data)

- Survival Significance Tests (Cox Hazard Proportion)

PLEASE NOTE:

This work is copyrighted, and shouldn’t be shared with others without the author’s permission.

© 2019, Colin McClure. All rights reserved

Getting Started with R

RStudio Basics

As stated at the beginning of this guide, I would HIGHLY recommend using RStudio (which runs R

through its User-Interface) rather than using R directly. Download R first, and then RStudio, but after

this you only need to load RStudio and use this.

When you load RStudio you’re presented with this Window:

A) This window contains previously saved Scripts (.R files) which you can write R code and notes in

for your own records. For every data set I analyse, I have an attaching .R Script file which

contains the code I ran for the analysis, and the results I got in case I need to go back and do the

analysis again when I find a mistake (which is WAAAAAAAAY too often)

B) This window is the R console itself. This is where you run your code, & where the magic happens

C) This is the Global Enviornment, and it’s a record of all the different data sets, and models which

you’ve run in your R session which is a REALLY handy reminder. So if I load a data set into R, it

will appear in that window, as will any modifications that I make to that data set (e.g. if I subset

the data, or remove columns etc.)

D) This window will show any plots I make which I can export as images or copy into Clipboard.

Pretty handy!

Configuring your Data

First configure your data in such a way so it’s readable in R.

If using an excel file, put it into this style of format and save as a .csv file!

https://rstudio.com/products/rstudio/download/
https://www.r-project.org/

© 2019, Colin McClure. All rights reserved

NOTE: Any variables termed as ‘1, 2, 3’ etc. will be treated as numerical data by default (e.g. if

you’ve recorded Replicate as 1, 2, etc., instead of 1st, 2nd, etc.), so best to use letters. You can change

this in R (see Setting up your Variables) if you’d prefer.

Loading your Data into R

First load up RStudio (this also loads up R, & runs R inside RStudio, make sure you have both

downloaded!) and change the directory to the file where your data is.

[Do this in ‘Session’‘Set Working Directory’ and follow the file path to where your data is]

Then to read the file you want:

dt=read.csv(“Data.csv”)

- dt is the name you’re giving the data set you’re loading into R

- read.csv is a function in R that tells R you want it to read a specific .csv file containing data,

and load it into the programme.

- (“Data.csv”) is the name of the file you want to load into R (you have to include the .csv for

this to work).

- = tells R that everytime you refer to dt in the future, you mean the Data.csv file that you’ve

loaded into it

You can get a summary (1st 5 lines) by writing (just to check you’re looking at the right thing):

head(dt)

Or you can view your data in a table format like in Excel but in R by:

fix(dt)

Setting up Variables Properly

Please note that any variables termed as ‘1, 2, 3’ etc. will be treated as numerical data by default

(e.g. if you’ve recorded Replicate as 1, 2, etc. instead of 1st, 2nd, etc.), so best to use letters. You can

check how R is reading your variables using:

str(dt)

You can change this in R by using the as.factor function:

© 2019, Colin McClure. All rights reserved

dt$Replicate=as.factor

- dt here refers to the data set your using

- Replicate is the variable you’re wanting to make a factor (instead of numeric),

- $ tells R your looking for the Replicate variable, in the dt data set

A good video describing the process is here.

Subsetting your Data

It’s really useful to subset your data to look at changes in means etc., say by Genotype for example:

dtr=subset(dt, Genotype==”Relish”)

NOTE: It’s important to name this subsetted data set something DIFFERENT from your

original, full data set, otherwise you subsetted data set will override you original one!

You can also exclude a level of your variable using the following formula:

dtdu=subset(dt, Genotype!=”Relish”)

To choose 2 or more specific categories you can use:

dtdr=subset(dt, Genotype==”Relish”|Genotype==”Dif”)

Understanding your Data

To get some characteristics of your data, you can use the summary function:

summary(dt)

To look at more specific aspects of your variables (means, medians, max, min, etc.) you can use the

tapply function:

tapply(dt$Lifespan, dt$Genotype, mean)

- tapply is the function R uses to give you information about your data

- dt$Lifespan, dt$Genotype, mean) tells R that you want to get the mean values of the

Lifespan variable, for each of the Genotypes from the dataset dt. NB: It’s important that

these are given in this order!

you can even use it to look at multiple independent variables at the same time:

tapply(dt$Lifespan, list(dt$Genotype,dt$Sex), mean))

https://www.youtube.com/watch?v=2Hik030y5Ns

© 2019, Colin McClure. All rights reserved

My friend (the amazing Dr Weihao Zhong) has written a formula to measure the Standard Error (SE)

as well through tapply:

se=function(x) sqrt(var(x,na.rm=T)/length(x)-length(which(is.na(x))))

tapply(dt$Lifespan, list(dt$Genotype,dt$Sex), se))

https://www.researchgate.net/profile/Weihao_Zhong

© 2019, Colin McClure. All rights reserved

General Stats

Normality

To figure out what stats test is appropriate for your data, you first must identify whether your data

follows a normal distribution or not.

You can do this through a statistical test, Shapiro-Wilks: (in this example we’re testing the

distribution of the response variable Distance in the data set dt)

shapiro.test(dt$Distance)

- shapiro.test is the name of the function which runs the Shapiro-Wilks normality test

- (dt$Distance) tells R you want to test the distribution of the continuous variable Distance in

the data set you’ve called dt

R Read-out

W = 0.95572, p-value = 6.644e-14

The variable is not normal as the p value is <0.05 (in this case p almost equals 0!)

This means I should use Non-Parametric tests which make fewer assumptions about the data

distribution, but are weaker tests. Or I could transform it so it fits a normal distribution, but I won’t.

You can also look at the distribution of your data using Quantile-Quantile (Q-Q) plots:

with(dt, qqnorm(Distance) + qqline(Distance))

- with(dt, tells R you want to use the test on the data set you’ve called dt

- qqnorm(Distance) plots the sample and theoretical quantiles

- qqline(Distance) draws a line through your points

- (Distance) tells R you want to test the distribution of the continuous variable Distance

Although the quantiles follow the projected line pretty well, it follows a sigmodal pattern, deviating

from the line significantly, so it’s not normally distributed (hence I should use non-parametric tests).

To learn more about how to interpret your qqplots, and determine whether your data is normally

distributed, see this useful webpage from the University of Virginia.

https://data.library.virginia.edu/understanding-q-q-plots/

© 2019, Colin McClure. All rights reserved

Binomial Tests

Probably the simplest Stats test to do is the binomial test.

You use this test to see whether your ratios between 2 (i.e. binomial) levels, of your response

(dependent) variable, are different from an expected ratio.

A great example is looking at sex ratio.

Say you were over-expressing a gene during development which you think is important in male-

specific development. Say you get 17 female flies from a total of 96. You can load your data into R

and do a binomial test:

binom.test(17, 96, p=0.5)

- binom.test tells R I want to perform a Binomial test

- 17, 96, informs R that I got 17 ‘successes’ out of a total of 96 ‘plays’

- p=0.5 tells R that the Null Hypothesis would expect a 50% chance of male & female

R Read-out

- Exact binomial test

- data: 17 and 83

- number of successes = 17, number of trials = 96, p-value = 9.942e-11

- alternative hypothesis: true probability of success is not equal to 0.5

- 95 percent confidence interval:

- 0.1240805 0.3075558

- sample estimates:

- probability of success 0.2048193

p value is ~0 so overexpressing the gene is affecting sex ratio significantly

Proportionality Tests

 If you want to check difference in proportions between 2 populations (so with no expected ratio),

you can use the proportionality test which is a version of a chi-squared test.

Say if you wanted to assess the sex ratios between 2 populations (i.e. PopA = 17M 83F, PopB = 40M

60F), you have to input them into the test as ‘successes’ (x) and ‘attempts’ (n).

So say we take Males as ‘successes’ and the overall offspring in each population as ‘attempts’.

The Males in each population are 17 & 40 respectively, the total offspring is 100 in each population:

prop.test(x=c(17,40), n=(100, 100)

R Read-out

- 2-sample test for equality of proportions with continuity correction

- X-squared = 11.8758, df = 1, p-value = 0.0005687 # p value indicates significant difference

- alternative hypothesis: two.sided

- 95 percent confidence interval:

© 2019, Colin McClure. All rights reserved

- -0.36099504 -0.09900496

- sample estimates:

- 0.17 0.40

Wilcox Tests

Say you have the overlap of genes from a data-base of interest, to those bound by a transcription

factor you’re working on. You have a single value (e.g. 31.8%), but you want to know whether this is

significant from random genes. Do Monte-Carlo analysis (usually >= 100 iterations) with a random

set of genes which number the same as in your observed data-set, so you get >= 100 values.

To test the difference between these 100 or so Monte-Carlo values and your 1 observational point,

you can use a Wilcox test.

Have your data as so:

and use the following script:

wilcox.test(dt$Overlap~dt$Data)

© 2019, Colin McClure. All rights reserved

Single-Variable, Two-Level Tests

Discrete Variable

So say you want to see the difference in a continuous variable (e.g. Lifespan) between a variable

which has two-levels (e.g. Sex which has ‘males’, and ‘females). This is pretty simple to do.

For Normal Data – You use a Welch t-test:

t.test(dt$Lifespan~dt$Sex)

- t.test is the function in R for the t-test

- dt$Lifespan is the dependent (response) variable we’re measuring in data set dt

- ~dt$Genotype is telling R that we want to look at the impact of our independent variable

Genotype, on the distance travelled by the animal (i.e. our dependent variable)

R Read-out

Welch Two Sample t-test

data: Lifespan by Sex

t = 4.0265, df = 698.87, p-value = 6.279e-05# p is tiny, so the Sexes significantly differ

mean in group F mean in group M

 45.40278 37.51944 # you can see Females (i.e. F) live longer

For Non-Parametric Data – You use a Wilcox Rank Sum:

wilcox.test(dt$Lifespan~dt$Sex)

R Read-out

Wilcoxon rank sum test with continuity correction

W = 74809, p-value = 0.0003348 # you can see the p value (while <0.05) is much higher than

in the t-test, and that’s because non-parametric tests are much weaker than parametric

Continuous Variable

Say you want to see if there’s a difference between two numeric variables, e.g. amount eaten and

body size.

If you want to know whether there’s a significant relationship between the two variables, and if

you’re response variable (i.e. amount Eaten) is normal, then you can use a simple Pearson’s

Correlation, which can be down using the script below:

cor.test(dt$Lifespan, dt$Size, type="pearson")

© 2019, Colin McClure. All rights reserved

R Read-Out

Pearson's product-moment correlation

data: Lifespan and Size

t = 2.706, df = 718, p-value = 0.006971 # p value <0.05 therefore significant correlation

 cor

0.1004775 # the correlation between Lifespan and Size is 0.1 (i.e. a slight +ve)

More information regarding correlations in R can be found here.

If your data is not normal, you have to use the non-parametric equivalent which is the Spearman’s

Correlation test:

cor.test(dt$Lifespan, dt$Size, type="spearman")

To understand how one of the variables can predict the other you can run a Regression. This can be

done by running a simple Linear Model:

m1=lm(dt$Lifespan~dt$Size)

summary(m1)

R Read-Out

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.8081 2.6485 13.143 < 2e-16 ***

Size 1.7799 0.6578 2.706 0.00697 **

Multiple R-squared: 0.0101, Adjusted R-squared: 0.008717

F-statistic: 7.323 on 1 and 718 DF, p-value: 0.006971

Here we can see that the Size is a significant predictor of Lifespan (F = 7.32; p = 0.007) but the

association between the two variables is pretty weak, as R-squared = 0.01.

This means that Size explains only 1% (i.e.0.01) of Lifespan, but it does so reliably, and therefore the

relationship is significant (i.e. p = 0.007)

https://www.statmethods.net/stats/correlations.html

© 2019, Colin McClure. All rights reserved

Visualising Data

Discrete Variable

You can visualise the data pretty easily using the normal plot function:

boxplot(dt$Distance~dt$Genotype)

You can adjust the y-axis range, or the x & y-axes labels with the following additions:

boxplot(dt$Distance~dt$Genotype, ylim=c(0,25), xlab=”Genotype”, ylab=”Dista

nce”)

Or if you want something nicer, load the ggplot2 package (‘Packages’ ‘Install Package’ [if first

time], or ‘load package’ if already installed in previous sessions, or load in terminal)

library(ggplot2)

qplot(Genotype, Distance, data=dt, geom=c("boxplot", "jitter"),

 fill=Genotype, main="Climbing Assay",

 xlab="Genotype", ylab="Distance Climbed (cm)")

- qplot is the function in R for plotting within the package ggplot2

- Genotype is telling R to plot Genotype on the x-axis

- Distance is the dependent (response) variable we’re measuring, and want it on the y-axis

- data=dt is the telling R we want to take the data from the data set we’ve called dt

- geom=c(“boxplot”, “jitter”) lets R know what kind of visualisation we want (i.e. Boxplot)

- fill=Genotype tells R we want to colour in the data using the number of ‘levels’ within the

variable Genotype. Because there’s 2 ‘levels’ here (i.e. Relish & Upd3), it gives red & blue

- main=”Climbing Assay” tells R to label the graph ‘Climbing Assay’ at the top

- xlab and ylab tells R what to call the x-axis and y-axis respectively

© 2019, Colin McClure. All rights reserved

Alternatively, you can view the response variable between 2 populations as an overlapping

Histogram

ggplot(dt, aes(x=Distance, fill=Genotype)) + geom_histogram(alpha=0.2, posi

tion=”identity”)

Two-Level Boxplots

Say if you wanted to split a variable (e.g. Genotype) by another (e.g. Sex), and to see if there might

be a difference between them, you can make a boxplot like this too!

ggplot(aes(y=Distance, x=Genotype, fill=Sex), data=dt) + geom_boxplot(posit

ion=position_dodge(width=.9))

- geom_boxplot lets R know what kind of visualisation we want (i.e. Boxplot)

- position=position_(width=.9) physically separates the Sex sections under Genotype

© 2019, Colin McClure. All rights reserved

© 2019, Colin McClure. All rights reserved

Continuous Variable

To plot correlations you can write:

plot(dt$Lifespan~dt$Size) + abline(lm(dt$Lifespan~dt$Size))

 NB: The variable that you put first (i.e. Lifespan in this case) will be on the y-axis

- abline(lm(dt$Lifespan~dt$Size) adds a line-of-best-fit to the correlation

To make it a bit more customisable and nicer looking you can use other packages, i.e. ggplot2

install(ggplot2)

ggplot(dt, aes(x=Size, y=Lifespan) + geom_point() + geom_smooth(method=lm,

se=FALSE)

- ggplot is the function in R;

- dt is name I’ve given the data set in R;

- aes(x=Eaten, y=Size) is telling R to put the x-axis as Eaten, and the y-axis as Size;

- + geom_point() tells R that I want R to show me each individual data point;

- + geom_smooth(method=lm, se=FALSE) tells R to show a line-of-best-fit, ensuring it uses a

line, and not to show the standard error in the values (comes up as a shadow around the

line, see below)

© 2019, Colin McClure. All rights reserved

The good thing with ggplot2 is that you can makes this really customised. For example, using the

following script (I know it looks a bit much, but it’s OK when broken down):

ggplot(dt, aes(x=Size, y=Lifespan)) + geom_point() + ggtitle("Lifespan vs S

ize") + geom_smooth(method=lm, se=TRUE) + scale_x_continuous(name = "Size",

limits = c(1, 7), breaks = seq(1, 7, 2)) + scale_y_continuous(name = "Lifes

pan", limits = c(0, 120), breaks = seq(0, 120, 20)) + theme(plot.title = el

ement_text(hjust = 0.5), panel.background = element_blank(), axis.line = el

ement_line(color="black"))

- ggtitle(“Lifespan vs Size”) tells R you want to give the graph the title “Lifespan vs Size”

- scale_x_continuous(name = "Size", limits = c(0, 8), breaks = seq(0, 8, 2)) tells R that the x-

axis should be given the name “Size”, it should go from values 08, and the points on the

scale should go from 08 with intervals of 2

- scale_y_continuous(name = "Lifespan", limits = c(0, 120), breaks = seq(0, 120, 20)) tells R

that the y-axis should be given the name “Lifespan”, it should go from values 0120, and

the points on the scale should go from 0120 with intervals of 20

- theme(plot.title = element_text(hjust = 0.5) tells R to label the axis at the mid-point

- panel.background = element_blank() tells R that the grey-panelled background that’s

default (see figure above) should be removed

- axis.line = element_line(color="black") tells R to draw a black line on the y axis

© 2019, Colin McClure. All rights reserved

Two-Variable / >Two-Level Tests

>Two-Level Tests

Say you want to assess the difference between the Lifespans of flies conditioned to 4 different diets.

If the expression data is normally distributed, you can use a One-Way ANOVA to assess the effect of

each treatment. Ensure you name your ANOVA something, in this example I’ve called it ‘fit’:

fit=aov(dt$Lifespan~dt$Diet)

summary(fit)

 R Read-Out

 Df Sum Sq Mean Sq F value Pr(>F)

Diet 3 1515 504.8 0.716 0.543 # p > 0.05

Residuals 716 505066 705.4

If your response variable isn’t normally distributed, you can use a Kruskal-Wallis test to do the same

thing an ANOVA does:

kruskal.test(dt$Lifespan~dt$Diet)

R Read-Out

Kruskal-Wallis chi-squared = 2.4611, df = 3,

p-value = 0.4824

So not a significant effect between diets… , but what about between each Diet?

For this you need Post-Hoc analysis.

For the ANOVA this is pretty straight forward, you use a Tukey’s test:

TukeyHSD(fit)

R Read-Out

 diff lwr upr p adj

B-A 0.3444444 -6.864742 7.553631 0.9993342

C-A 3.3444444 -3.864742 10.553631 0.6304511

D-A 2.7111111 -4.498075 9.920297 0.7674907

C-B 3.0000000 -4.209186 10.209186 0.7069972

© 2019, Colin McClure. All rights reserved

D-B 2.3666667 -4.842520 9.575853 0.8327234

D-C -0.6333333 -7.842520 6.575853 0.9959167

P adj is the important value here, everything’s significant with each other

For non-parametric data, it’s a little easier, as you can complete a Dunn Test which will complete

BOTH the overall Kruskal-Wallis test, AND the Dunn pair-wise comparisons:

install.packages("dunn.test")

dunn.test::dunn.test(dt$Lifespan, dt$Diet)

ALTERNATIVELY

For Kruskal-Wallis analysis, you use the crazy named Kruskal-Wallis-Nemenyi test. You need to load

the PMCMR package (updated in January 2018 to PMCMRPlus):

library(PMCMRplus)

kwAllPairsNemenyiTest(Lifespan~Diet, dt)

R Read-Out

 A B C

B 1.00 - -

C 0.61 0.65 -

D 0.73 0.76 1.00

So ‘A’ & ‘C’ are most different (p = 0.61), but no Diets are different from one-another significantly

© 2019, Colin McClure. All rights reserved

Multi-Variable Tests

Sometimes you want to measure the effect of more than one factor e.g. the lifespan of flies under

different diets and temperatures. In this scenario you want to see whether there are independent

effects of diet and temperature, but also whether there is an interaction between these variables on

longevity (e.g. does Diet affect Lifespan differently at one temperature than it does at another). For

this you can use a Two-Way ANOVA for normal data when dealing with categorical factors. NB:

Use ‘*’ to look at factor & interaction, and ‘:’ for just the interaction

m1=aov(dt$Lifespan~dt$Diet*dt$Temperature)

summary(m1)

R Read-Out

 Df Sum Sq Mean Sq F value Pr(>F)

Diet 3 1515 505 0.776 0.507

Temperature 2 43583 21791 33.516 1.24e-14 ***

Diet:Temperature 6 1155 193 0.296 0.939

Residuals 708 460328 650

From these results, we can see that Temperature has a significant effect on Lifespan, but not Diet,

nor the interaction between the two variables.

Again, we can use Tuskey’s HSD to see the pairwise interactions:

TukeyHSD(m1)

R Read-Out

$Diet

 diff lwr upr p adj

B-A 0.3444444 -6.577009 7.265898 0.9992479

C-A 3.3444444 -3.577009 10.265898 0.5988103

D-A 2.7111111 -4.210343 9.632565 0.7444022

C-B 3.0000000 -3.921454 9.921454 0.6796821

D-B 2.3666667 -4.554787 9.288120 0.8149808

D-C -0.6333333 -7.554787 6.288120 0.9953930

$Temperature

 diff lwr upr p adj

© 2019, Colin McClure. All rights reserved

25-22 -12.200000 -17.66694 -6.733055 0.0000006

28-22 -18.779167 -24.24611 -13.312222 0.0000000

28-25 -6.579167 -12.04611 -1.112222 0.0134064

$`Diet:Temperature`

 diff lwr upr p adj

B:22-A:22 1.5666667 -13.698624 16.83195707 1.0000000

C:22-A:22 3.5833333 -11.681957 18.84862374 0.9998022

D:22-A:22 0.9333333 -14.331957 16.19862374 1.0000000

A:25-A:22 -12.7500000 -28.015290 2.51529040 0.2095667

B:25-A:22 -14.4000000 -29.665290 0.86529040 0.0859197

… … … … …

When you have non-parametric distributions, you can’t use Kruskal-Wallis as it only works on one-

way analysis. Ordinal Logistic Regressions are pretty bad as your response variable has to be

categorical with >=2 levels…

So use Generalised Linear Models (GLM)!

GLMs are pretty much the same as a Linear Model as used above (i.e. in Regression analysis), but

can use variables of different types (i.e. not just continuous variables).

However, these models require you to know a little more about your data…

If your data follows a Guassian distribution, you can use a Linear Model, but if it follows any other

distribution (e.g. Poisson, binomial, etc. see this site for details), use a GLM, and specify the

distribution in the formula (as below). NB: Requires the Package lmer4

library(lme4)

a=glm(Lifespan~Diet*Temperature, family=poisson, data=dt)

summary(a)

R Read-Out

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.917342 0.018209 215.133 < 2e-16

DietB 0.030691 0.025556 1.201 0.22977

DietC 0.068860 0.025319 2.720 0.00653

… … …. … …

https://www.statmethods.net/advstats/glm.html

© 2019, Colin McClure. All rights reserved

Comparing the effects of multiple variables

When you have 2 or more variables that affect your response variable (e.g. like Diet & Temperature),

you will want to identify the impact of each of these variables independently, as well as whether any

interactions exist between them.

You get some indication of the impact of these elements individually from an ANOVA or a GLM (like

in the example above, LINK), but a better way is to assess the difference in how Models Fit the data

using an ANOVA. If you do this in a step-wise manner, you can identify whether including a variable

in your test makes a significant difference to how the model fits the data or not, and thus whether it

affects your response variable or not. This is known as a Partial F Statistic. Here’s a good video

describing the process (Example 1 describes a Multiple Linear Regression, while Example 2 describes

a Non-linear Regression of a single variable).

NB: The Partial F Statsitic measure only works (i.e. gives you a significance value) with Linear

Models (i.e. lm or lmer models, see below) and not Generalised Linear Models (i.e. glm or glmer

models).

model1 = lm(dt$Lifespan ~ dt$Diet + dt$Temperature)

model2 = lm(dt$Lifespan ~ dt$Diet)

anova(model1, model2)

R Read-Out

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 714 461484

2 716 505066 -2 -43583 33.715 1.02e-14 ***

We can see from the Residual Sum Squares (RSS) [this is a value which indicates how far the

model deviates from the data points, so a lower number is better], that the 1st model fits

better (i.e. the one with temperature included) than the 2nd model (i.e. has a lower RSS

value), and we see from the p value, that this difference is significant. Therefore, we can say

that Temperature has a significant effect on Lifespan

Mixed-Effects Models

The word Mixed here means the inclusion of a Random Effect in your model, which just means you

want to identify whether some variable in your data which you don’t intend on measuring or

investigating affects your response variable significantly or not.

This could be the age of the individual testes, the location the organisms are in the incubator, or the

batch (e.g. Replicate) in which the samples were processed in. Including these as Random Effects in

your model allow us to account for inherent lumpiness of data caused by such factors. Like ordinary

GLMs, they require the package lme4

If your data follows a Gaussian distribution, use a linear mixed model (lmer), otherwise, you can use

a glmer, but be aware that Partial F Statistics won’t give a p value if comparing two glmer models.

m1=lmer(Lifespan~Diet+Temperature+(1|Replicate), data=dt)

https://www.youtube.com/watch?v=G_obrpV70QQ

© 2019, Colin McClure. All rights reserved

summary(m1)

Again, we use Partial F Statistics to identify whether the variable has a significant effect:

model1 = lmer(Lifespan~Diet+(1|Replicate), data=dt)

model2 = lmer(Lifespan~Diet, data=dt)

anova(model1, model2)

R Read-Out

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

2 4 6707 6725.3 -3349.5 6699

1 5 6709 6731.9 -3349.5 6699 0 1 1

The difference between the models here is very small (AIC & BIC are values which indicate how well

the model fits [lower is better], and they’re very similar between the models), and this is reflected in

the p value (p = 1) which shows the Random Effect, Replicate, does not affect the data.

NB: You can use:

(1|Replicate)

If you can assume the random effect is the same for every individual sample.

Alternatively, if you have reason to believe the random effect might affect samples differently

between the different levels of one of your variables, you can use the formula

(Diet|Replicate)

© 2019, Colin McClure. All rights reserved

Collating & Analysing Survival Data

Configuring for Survival Analysis

Say you have data in an Excel file like:

To get it ready for R you have to configure it as so:

You do this in Excel for each replicate, treatment and factor individually. The formula can be found in

the ‘Survival Transformation Example.xls’ file.

Once you have transformed each of your replicates like above, collate them with the appropriate

information. Before you save the file, you have to DELETE the first data column (column E in this

example) as it is just a list of the days survival was recorded. Once this has been done you can save

the file as a .csv called “Survival Data for R.csv”.

Once in this format you can use a function made by the fantastic Dr Weihao Zhang to transpose it in

R:

© 2019, Colin McClure. All rights reserved

Weihao’s Script for Transposing Survival Data

raw=read.csv("Survival Data for R.csv")

make function

make.rm<-function(constant,repeated,data,contrasts) {

 if(!missing(constant) && is.vector(constant)) {

 if(!missing(repeated) && is.vector(repeated)) {

 if(!missing(data)) {

 dd<-dim(data)

 replen<-length(repeated)

 if(missing(contrasts))

 contrasts<-

 ordered(sapply(paste("T",1:length(repeated),sep=""),rep,dd[1]))

 else

 contrasts<-matrix(sapply(contrasts,rep,dd[1]),ncol=dim(contrasts)[2])

 if(length(constant) == 1) cons.col<-rep(data[,constant],replen)

 else cons.col<-lapply(data[,constant],rep,replen)

 new.df<-data.frame(cons.col,

 repdat=as.vector(data.matrix(data[,repeated])),

 contrasts)

 return(new.df)

 }

 }

 }

 cat("Usage: make.rm(constant, repeated, data [, contrasts])\n")

 cat("\tWhere 'constant' is a vector of indices of non-repeated data and\n"

)

 cat("\t'repeated' is a vector of indices of the repeated measures data.\n"

)

}

dt=make.rm(1:4, 5:112, raw) # **CHANGE THESE!!!!!!**

dt.no.NAs=dt[complete.cases(dt),]

write.csv(dt.no.NAs,file = "Transposed survival data.csv", row.names = FALS

E)

** Change highlighted numbers depending on how many category (e.g. Genotype, Diet, Death etc.)

and data columns (i.e. days lifespan was recorded) you have in your data set.

Delete ‘contrasts’ column and change 'repdat' to 'Lifespan' in the ‘Transposed survival data’ file, save

it (again as a .csv file) & it’s ready for analysis!

© 2019, Colin McClure. All rights reserved

Analysing Survival Data

Once you have your data in R, there are a number of ways you can analyse your data

Load data

dt=read.csv(“Survivals.csv”)

Load (or install, then load) survival package

library(survival)

You want to have a general look at the data to see if there are any immediate differences (i.e. mean

lifespan with standard errors).

You first have to create a formula for the standard error calculation.

Thankfully the brilliant Dr Weihao Zhang also made a function for this called se:

se=function(x) sqrt(var(x,na.rm=T)/(length(x)-length(which(is.na(x)))))

So subset the data as you wish and work out the means & se for Lifespan:

dti=subset(dt, Dose!="PBS")

tapply(dti$Lifespan, list(dti$Genotype, dti$Dose), mean)

se=function(x) sqrt(var(x,na.rm=T)/(length(x)-length(which(is.na(x)))))

tapply(dti$Lifespan, list(dti$Genotype, dti$Dose), se))

 High Low

+/TotM 7.680851 8.140000

tub/TotM 7.604167 8.115385

 High Low

+/TotM 0.2528403 0.292784

tub/TotM 0.1900438 0.280935

So not much difference in the means between the Genotypes…

You can test these statistically using a Wilcox test (lifespan data isn’t normally distributed)

wilcox.test(dtl$Lifespan ~ dtl$Genotype)

W = 863.5, p-value = 0.4037

wilcox.test(dth$Lifespan ~ dth$Genotype)

W = 798.5, p-value = 0.2855

© 2019, Colin McClure. All rights reserved

Model Analysis

Now because I have infection data in this example, there’s not much point in me doing complex

analysis on survival curves using model fitting, as the survivals crash, so I will use the Cox Hazard

Proportion model. I will use the dti data set to see if there’s a Genotype effect:

First load/install the Survival package which contains the coxph() function

library(“survival”)

coxph(Surv(Lifespan, Death)~Genotype,dti)

coxph(formula = Surv(Lifespan, Death) ~ Genotype, data = dti)

 coef exp(coef) se(coef) z p

Genotype tub/TotM 0.0401 1.04 0.143 0.28 0.78

Likelihood ratio test=0.08 on 1 df, p=0.779 n= 197, number of events= 197

Nope, doesn’t look like it…

What about a Genotype:Dose interaction?

m1<-coxph(Surv(Lifespan, Death)~Genotype*Dose,dti)

m2<-update(m1,~.- Genotype:Dose)

anova(m1,m2)

Cox model: response is Surv(Lifespan, Death)

Model 1: ~ Genotype * Dose

Model 2: ~ Genotype + Dose

loglik Chisq Df P(>|Chi|)

1 -841.03

2 -841.74 1.4183 1 0.2337

Nope, no interaction either

Plotting Cox HP

Say I wanted to make a graph of the Cox HP results.

Let’s go back to our Genotype results:

 coef exp(coef) se(coef) z p

Genotype tub/TotM 0.0401 1.04 0.143 0.28 0.78

© 2019, Colin McClure. All rights reserved

Here the exp(coef) is the hazard proportion relative to the first genotype assessed, which in this case

is +/TotM, the control Genotype. (Subsets are processed in alphabetical order, so the subset you

want to relate everything to has to alphabetically come first, thankfully ‘+’ comes before all letters!).

The se(coef) is the standard error of the coefficient, although I think if your exp(coef) is >1, you have

to multiply the se(coef) by the exp(coef) to get the true standard error.

I would put these values into a new .csv file and plot them using the Plotrix package:

dt=read.csv("Surv Fig.csv")

attach(dt)

library(plotrix) # or install first!

par(mar=c(5, 5, 4, 2))

This sets the position of graph in space, best not to touch!

plotCI(x=c(1.5), 1.041, uiw=0.142, liw=0.142, col=c('grey80'), lwd=2, pch=1

6, err="y", xaxt="n", xlab="TotM RNAi", ylab="Hazard Ratio", main="Hazard P

roportions of Treated Flies", cex.main=2, cex.lab=1.5, ylim=c(0.8, 1.2), xl

im=c(1,2))

Lots of stuff in this line... uiw & liw are the error limits, pch is the point type, etc.

abline(h=1, col=1, lty=2, lwd=2)

This adds an additional line in, h=1 means that it's horizontal and is at 1, col is the colour, lty is line

type, and lwd is line width

© 2019, Colin McClure. All rights reserved

Or if using more data points

Make a .csv file of CoxHP data:

attach(dt)

par(mar=c(5, 5, 4, 2)) #sets position of graph in space

plotCI(x=c(1.5, 2, 3, 3.5), Mean, uiw=SE, liw=SE, col=c('black', 'black', '

grey65', 'grey65'), lwd=2, pch=16, err="y", xaxt="n", xlab="Dif

Rel", ylab="Hazard Ratio", main="Hazard Proportions of Treated Flies", cex.

main=2, cex.lab=1.5, ylim=c(0.4, 1.4), xlim=c(1, 4))

Lots of stuff in this line... uiw & liw are the error limits, pch is the

point type, etc.

chp<-as.character(dt[[2]]) # stating which column in csv file to put as x a

xis

axis(side=1,at=c(1.5, 2, 3, 3.5), labels=chp, cex.axis=1) # stating space o

f axis, axis labels, cex.axis describes axis font size

abline(h=1, col=1, lty=2, lwd=2) # adds an additional line in, h=1 means th

at it's horizontal and is at 1, col is the colour, lty is line type, and lw

d is line width

