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Colin’s How To… R 

 

Good job you got some data! 

Now to think about analysing it the right way to see if it shows anything… 

Why R & not Excel/SPSS? ‘Cause the skills are invaluable in many growing sectors today! & it’s FREE! 

 

In this Guide, I will be giving you scripts to use R effectively to manipulate data, and to perform (& 

understand the read-outs!) of statistical tests. I would HIGHLY recommend using RStudio (which runs 

R through its User-Interface) rather than using R directly. Download R first, and then RStudio, but 

after this you only need to load RStudio and use this. 

 

Actual scripts are either given in the boxes below or coloured in blue to separate them from notes: 

R scripts in here 

 

Read-Outs from R are highlighted in grey. 

Any notes beginning with a # will be ignored if written into R (it sees # as a ‘stop reading’ sign). 

 

The data used for this Guide can be downloaded here. You can download it, load it into R, and go 

through the various data manipulation / stats tests using the code provided. Here’s a screenshot: 

 

Our Response (i.e. Dependent) Variables are in blue; Categorical Independent Variables in yellow; 

Continuous Independent Variables in red; Random Effect in green 

NOTE: This document describes how to use R to run particular tests, how to read outputs, and (to a 

degree) how to plot data. If you’re still deciding which statistical test if appropriate for you, read my 

Colin’s How To Stats guide which might be more helpful  

https://www.youtube.com/watch?v=u94oFWZCTCU
https://rstudio.com/products/rstudio/download/
https://www.r-project.org/
https://drflyguy.weebly.com/uploads/1/0/4/8/104802779/data.csv
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Getting Started with R 

 

RStudio Basics 

As stated at the beginning of this guide, I would HIGHLY recommend using RStudio (which runs R 

through its User-Interface) rather than using R directly. Download R first, and then RStudio, but after 

this you only need to load RStudio and use this. 

When you load RStudio you’re presented with this Window: 

 

A) This window contains previously saved Scripts (.R files) which you can write R code and notes in 

for your own records. For every data set I analyse, I have an attaching .R Script file which 

contains the code I ran for the analysis, and the results I got in case I need to go back and do the 

analysis again when I find a mistake (which is WAAAAAAAAY too often) 

B) This window is the R console itself. This is where you run your code, & where the magic happens 

C) This is the Global Enviornment, and it’s a record of all the different data sets, and models which 

you’ve run in your R session which is a REALLY handy reminder. So if I load a data set into R, it 

will appear in that window, as will any modifications that I make to that data set (e.g. if I subset 

the data, or remove columns etc.) 

D) This window will show any plots I make which I can export as images or copy into Clipboard. 

Pretty handy! 

 

Configuring your Data 

First configure your data in such a way so it’s readable in R.  

If using an excel file, put it into this style of format and save as a .csv file! 

https://rstudio.com/products/rstudio/download/
https://www.r-project.org/
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NOTE: Any variables termed as ‘1, 2, 3’ etc. will be treated as numerical data by default (e.g. if 

you’ve recorded Replicate as 1, 2, etc., instead of 1st, 2nd, etc.), so best to use letters. You can change 

this in R (see Setting up your Variables) if you’d prefer. 

 

Loading your Data into R 

First load up RStudio (this also loads up R, & runs R inside RStudio, make sure you have both 

downloaded!) and change the directory to the file where your data is. 

[Do this in ‘Session’‘Set Working Directory’ and follow the file path to where your data is] 

Then to read the file you want: 

dt=read.csv(“Data.csv”) 

- dt is the name you’re giving the data set you’re loading into R 

- read.csv is a function in R that tells R you want it to read a specific .csv file containing data, 

and load it into the programme.  

- (“Data.csv”) is the name of the file you want to load into R (you have to include the .csv for 

this to work).  

- = tells R that everytime you refer to dt in the future, you mean the Data.csv file that you’ve 

loaded into it 

You can get a summary (1st 5 lines) by writing (just to check you’re looking at the right thing): 

head(dt) 

Or you can view your data in a table format like in Excel but in R by: 

fix(dt) 

 

Setting up Variables Properly 

Please note that any variables termed as ‘1, 2, 3’ etc. will be treated as numerical data by default 

(e.g. if you’ve recorded Replicate as 1, 2, etc. instead of 1st, 2nd, etc.), so best to use letters. You can 

check how R is reading your variables using: 

str(dt) 

You can change this in R by using the as.factor function: 
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dt$Replicate=as.factor 

- dt here refers to the data set your using 

- Replicate is the variable you’re wanting to make a factor (instead of numeric),  

- $ tells R your looking for the Replicate variable, in the dt data set 

A good video describing the process is here. 

 

Subsetting your Data 

It’s really useful to subset your data to look at changes in means etc., say by Genotype for example: 

dtr=subset(dt, Genotype==”Relish”) 

NOTE: It’s important to name this subsetted data set something DIFFERENT from your 

original, full data set, otherwise you subsetted data set will override you original one! 

You can also exclude a level of your variable using the following formula: 

dtdu=subset(dt, Genotype!=”Relish”) 

To choose 2 or more specific categories you can use: 

dtdr=subset(dt, Genotype==”Relish”|Genotype==”Dif”) 

 

Understanding your Data 

To get some characteristics of your data, you can use the summary function: 

summary(dt) 

To look at more specific aspects of your variables (means, medians, max, min, etc.) you can use the 

tapply function: 

tapply(dt$Lifespan, dt$Genotype, mean) 

- tapply is the function R uses to give you information about your data 

- dt$Lifespan, dt$Genotype, mean) tells R that you want to get the mean values of the 

Lifespan variable, for each of the Genotypes from the dataset dt. NB: It’s important that 

these are given in this order! 

you can even use it to look at multiple independent variables at the same time: 

tapply(dt$Lifespan, list(dt$Genotype,dt$Sex), mean)) 

 

https://www.youtube.com/watch?v=2Hik030y5Ns


© 2019, Colin McClure. All rights reserved 

My friend (the amazing Dr Weihao Zhong) has written a formula to measure the Standard Error (SE) 

as well through tapply: 

se=function(x) sqrt(var(x,na.rm=T)/length(x)-length(which(is.na(x)))) 

tapply(dt$Lifespan, list(dt$Genotype,dt$Sex), se)) 

 

 

 

 

  

https://www.researchgate.net/profile/Weihao_Zhong
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General Stats 

 

Normality 

To figure out what stats test is appropriate for your data, you first must identify whether your data 

follows a normal distribution or not. 

You can do this through a statistical test, Shapiro-Wilks: (in this example we’re testing the 

distribution of the response variable Distance in the data set dt) 

shapiro.test(dt$Distance) 

- shapiro.test is the name of the function which runs the Shapiro-Wilks normality test 

- (dt$Distance) tells R you want to test the distribution of the continuous variable Distance in 

the data set you’ve called dt 

R Read-out 

W = 0.95572, p-value = 6.644e-14 

The variable is not normal as the p value is <0.05 (in this case p almost equals 0!) 

This means I should use Non-Parametric tests which make fewer assumptions about the data 

distribution, but are weaker tests. Or I could transform it so it fits a normal distribution, but I won’t. 

You can also look at the distribution of your data using Quantile-Quantile (Q-Q) plots: 

with(dt, qqnorm(Distance) + qqline(Distance)) 

- with(dt, tells R you want to use the test on the data set you’ve called dt 

- qqnorm(Distance) plots the sample and theoretical quantiles 

- qqline(Distance) draws a line through your points 

- (Distance) tells R you want to test the distribution of the continuous variable Distance 

 

Although the quantiles follow the projected line pretty well, it follows a sigmodal pattern, deviating 

from the line significantly, so it’s not normally distributed (hence I should use non-parametric tests). 

To learn more about how to interpret your qqplots, and determine whether your data is normally 

distributed, see this useful webpage from the University of Virginia.  

https://data.library.virginia.edu/understanding-q-q-plots/
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Binomial Tests 

Probably the simplest Stats test to do is the binomial test. 

You use this test to see whether your ratios between 2 (i.e. binomial) levels, of your response 

(dependent) variable, are different from an expected ratio. 

A great example is looking at sex ratio. 

Say you were over-expressing a gene during development which you think is important in male-

specific development. Say you get 17 female flies from a total of 96. You can load your data into R 

and do a binomial test: 

binom.test(17, 96, p=0.5) 

- binom.test tells R I want to perform a Binomial test 

- 17, 96, informs R that I got 17 ‘successes’ out of a total of 96 ‘plays’ 

- p=0.5 tells R that the Null Hypothesis would expect a 50% chance of male & female 

R Read-out 

- Exact binomial test 

- data:  17 and 83 

- number of successes = 17, number of trials = 96, p-value = 9.942e-11 

- alternative hypothesis: true probability of success is not equal to 0.5 

- 95 percent confidence interval: 

- 0.1240805 0.3075558 

- sample estimates: 

- probability of success  0.2048193 

p value is ~0 so overexpressing the gene is affecting sex ratio significantly 

 

Proportionality Tests 

 If you want to check difference in proportions between 2 populations (so with no expected ratio), 

you can use the proportionality test which is a version of a chi-squared test. 

Say if you wanted to assess the sex ratios between 2 populations (i.e. PopA = 17M 83F, PopB = 40M 

60F), you have to input them into the test as ‘successes’ (x) and ‘attempts’ (n). 

So say we take Males as ‘successes’ and the overall offspring in each population as ‘attempts’. 

The Males in each population are 17 & 40 respectively, the total offspring is 100 in each population: 

prop.test(x=c(17,40), n=(100, 100) 

R Read-out 

- 2-sample test for equality of proportions with continuity correction 

- X-squared = 11.8758, df = 1, p-value = 0.0005687 # p value indicates significant difference 

- alternative hypothesis: two.sided 

- 95 percent confidence interval: 
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- -0.36099504 -0.09900496 

- sample estimates: 

- 0.17   0.40 

 

Wilcox Tests 

Say you have the overlap of genes from a data-base of interest, to those bound by a transcription 

factor you’re working on. You have a single value (e.g. 31.8%), but you want to know whether this is 

significant from random genes. Do Monte-Carlo analysis (usually >= 100 iterations) with a random 

set of genes which number the same as in your observed data-set, so you get >= 100 values. 

To test the difference between these 100 or so Monte-Carlo values and your 1 observational point, 

you can use a Wilcox test. 

Have your data as so: 

 

and use the following script: 

wilcox.test(dt$Overlap~dt$Data)  
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Single-Variable, Two-Level Tests 

 

Discrete Variable 

So say you want to see the difference in a continuous variable (e.g. Lifespan) between a variable 

which has two-levels (e.g. Sex which has ‘males’, and ‘females). This is pretty simple to do. 

For Normal Data – You use a Welch t-test: 

t.test(dt$Lifespan~dt$Sex) 

- t.test is the function in R for the t-test 

- dt$Lifespan is the dependent (response) variable we’re measuring in data set dt 

- ~dt$Genotype is telling R that we want to look at the impact of our independent variable 

Genotype, on the distance travelled by the animal (i.e. our dependent variable) 

R Read-out 

Welch Two Sample t-test 

data:  Lifespan by Sex 

t = 4.0265, df = 698.87, p-value = 6.279e-05# p is tiny, so the Sexes significantly differ 

mean in group F mean in group M  

       45.40278        37.51944  # you can see Females (i.e. F) live longer 

 

For Non-Parametric Data – You use a Wilcox Rank Sum: 

wilcox.test(dt$Lifespan~dt$Sex) 

R Read-out 

Wilcoxon rank sum test with continuity correction 

W = 74809, p-value = 0.0003348 # you can see the p value (while <0.05) is much higher than 

in the t-test, and that’s because non-parametric tests are much weaker than parametric 

 

Continuous Variable 

Say you want to see if there’s a difference between two numeric variables, e.g. amount eaten and 

body size. 

If you want to know whether there’s a significant relationship between the two variables, and if 

you’re response variable (i.e. amount Eaten) is normal, then you can use a simple Pearson’s 

Correlation, which can be down using the script below: 

cor.test(dt$Lifespan, dt$Size, type="pearson") 
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R Read-Out 

Pearson's product-moment correlation 

data:  Lifespan and Size 

t = 2.706, df = 718, p-value = 0.006971 # p value <0.05 therefore significant correlation 

     cor  

0.1004775 # the correlation between Lifespan and Size is 0.1 (i.e. a slight +ve) 

More information regarding correlations in R can be found here. 

 

If your data is not normal, you have to use the non-parametric equivalent which is the Spearman’s 

Correlation test: 

cor.test(dt$Lifespan, dt$Size, type="spearman") 

 

To understand how one of the variables can predict the other you can run a Regression. This can be 

done by running a simple Linear Model: 

m1=lm(dt$Lifespan~dt$Size) 

summary(m1) 

R Read-Out 

              Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)   34.8081      2.6485    13.143    < 2e-16 *** 

Size           1.7799      0.6578    2.706    0.00697 **  

Multiple R-squared:  0.0101, Adjusted R-squared:  0.008717  

F-statistic: 7.323 on 1 and 718 DF,  p-value: 0.006971 

Here we can see that the Size is a significant predictor of Lifespan (F = 7.32; p = 0.007) but the 

association between the two variables is pretty weak, as R-squared = 0.01. 

This means that Size explains only 1% (i.e.0.01) of Lifespan, but it does so reliably, and therefore the 

relationship is significant (i.e. p = 0.007) 

  

https://www.statmethods.net/stats/correlations.html
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Visualising Data 

 

Discrete Variable 

You can visualise the data pretty easily using the normal plot function: 

boxplot(dt$Distance~dt$Genotype) 

 

You can adjust the y-axis range, or the x & y-axes labels with the following additions: 

boxplot(dt$Distance~dt$Genotype, ylim=c(0,25), xlab=”Genotype”, ylab=”Dista

nce”) 

 

Or if you want something nicer, load the ggplot2 package (‘Packages’  ‘Install Package’ [if first 

time], or ‘load package’ if already installed in previous sessions, or load in terminal) 

library(ggplot2) 

qplot(Genotype, Distance, data=dt, geom=c("boxplot", "jitter"),  

   fill=Genotype, main="Climbing Assay", 

   xlab="Genotype", ylab="Distance Climbed (cm)") 

- qplot is the function in R for plotting within the package ggplot2 

- Genotype is telling R to plot Genotype on the x-axis 

- Distance is the dependent (response) variable we’re measuring, and want it on the y-axis 

- data=dt is the telling R we want to take the data from the data set we’ve called dt 

- geom=c(“boxplot”, “jitter”) lets R know what kind of visualisation we want (i.e. Boxplot) 

- fill=Genotype tells R we want to colour in the data using the number of ‘levels’ within the 

variable Genotype. Because there’s 2 ‘levels’ here (i.e. Relish & Upd3), it gives red & blue 

- main=”Climbing Assay” tells R to label the graph ‘Climbing Assay’ at the top 

- xlab and ylab tells R what to call the x-axis and y-axis respectively 
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Alternatively, you can view the response variable between 2 populations as an overlapping 

Histogram 

ggplot(dt, aes(x=Distance, fill=Genotype)) + geom_histogram(alpha=0.2, posi

tion=”identity”) 

 

 

Two-Level Boxplots 

Say if you wanted to split a variable (e.g. Genotype) by another (e.g. Sex), and to see if there might 

be a difference between them, you can make a boxplot like this too! 

ggplot(aes(y=Distance, x=Genotype, fill=Sex), data=dt) + geom_boxplot(posit

ion=position_dodge(width=.9)) 

- geom_boxplot lets R know what kind of visualisation we want (i.e. Boxplot)  

- position=position_(width=.9) physically separates the Sex sections under Genotype 
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Continuous Variable 

To plot correlations you can write: 

plot(dt$Lifespan~dt$Size) + abline(lm(dt$Lifespan~dt$Size)) 

 NB: The variable that you put first (i.e. Lifespan in this case) will be on the y-axis 

- abline(lm(dt$Lifespan~dt$Size) adds a line-of-best-fit to the correlation 

 

To make it a bit more customisable and nicer looking you can use other packages, i.e. ggplot2 

install(ggplot2) 

ggplot(dt, aes(x=Size, y=Lifespan) + geom_point() + geom_smooth(method=lm, 

se=FALSE)  

- ggplot is the function in R;  

- dt is name I’ve given the data set in R;  

- aes(x=Eaten, y=Size) is telling R to put the x-axis as Eaten, and the y-axis as Size;  

- + geom_point() tells R that I want R to show me each individual data point;  

- + geom_smooth(method=lm, se=FALSE) tells R to show a line-of-best-fit, ensuring it uses a 

line, and not to show the standard error in the values (comes up as a shadow around the 

line, see below) 
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The good thing with ggplot2 is that you can makes this really customised. For example, using the 

following script (I know it looks a bit much, but it’s OK when broken down): 

ggplot(dt, aes(x=Size, y=Lifespan)) + geom_point() + ggtitle("Lifespan vs S

ize") + geom_smooth(method=lm, se=TRUE) + scale_x_continuous(name = "Size", 

limits = c(1, 7), breaks = seq(1, 7, 2)) + scale_y_continuous(name = "Lifes

pan", limits = c(0, 120), breaks = seq(0, 120, 20)) + theme(plot.title = el

ement_text(hjust = 0.5), panel.background = element_blank(), axis.line = el

ement_line(color="black")) 

- ggtitle(“Lifespan vs Size”) tells R you want to give the graph the title “Lifespan vs Size”  

- scale_x_continuous(name = "Size", limits = c(0, 8), breaks = seq(0, 8, 2)) tells R that the x-

axis should be given the name “Size”, it should go from values 08, and the points on the 

scale should go from 08 with intervals of 2  

- scale_y_continuous(name = "Lifespan", limits = c(0, 120), breaks = seq(0, 120, 20)) tells R 

that the y-axis should be given the name “Lifespan”, it should go from values 0120, and 

the points on the scale should go from 0120 with intervals of 20  

- theme(plot.title = element_text(hjust = 0.5) tells R to label the axis at the mid-point 

- panel.background = element_blank() tells R that the grey-panelled background that’s 

default (see figure above) should be removed  

- axis.line = element_line(color="black") tells R to draw a black line on the y axis  
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Two-Variable / >Two-Level Tests 

 

>Two-Level Tests 

Say you want to assess the difference between the Lifespans of flies conditioned to 4 different diets. 

If the expression data is normally distributed, you can use a One-Way ANOVA to assess the effect of 

each treatment. Ensure you name your ANOVA something, in this example I’ve called it ‘fit’: 

fit=aov(dt$Lifespan~dt$Diet) 

summary(fit) 

 R Read-Out 

               Df  Sum Sq   Mean Sq  F value   Pr(>F) 

Diet          3    1515     504.8     0.716    0.543 # p > 0.05 

Residuals   716  505066    705.4 

 

If your response variable isn’t normally distributed, you can use a Kruskal-Wallis test to do the same 

thing an ANOVA does: 

kruskal.test(dt$Lifespan~dt$Diet) 

R Read-Out 

Kruskal-Wallis chi-squared = 2.4611, df = 3, 

p-value = 0.4824 

 

So not a significant effect between diets… , but what about between each Diet? 

For this you need Post-Hoc analysis. 

For the ANOVA this is pretty straight forward, you use a Tukey’s test: 

TukeyHSD(fit) 

R Read-Out  

          diff        lwr         upr       p adj 

B-A  0.3444444 -6.864742   7.553631  0.9993342 

C-A  3.3444444 -3.864742  10.553631  0.6304511 

D-A  2.7111111 -4.498075   9.920297  0.7674907 

C-B  3.0000000 -4.209186  10.209186  0.7069972 
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D-B  2.3666667 -4.842520   9.575853  0.8327234 

D-C -0.6333333 -7.842520   6.575853  0.9959167 

P adj is the important value here, everything’s significant with each other 

 

For non-parametric data, it’s a little easier, as you can complete a Dunn Test which will complete 

BOTH the overall Kruskal-Wallis test, AND the Dunn pair-wise comparisons: 

install.packages("dunn.test") 

dunn.test::dunn.test(dt$Lifespan, dt$Diet) 

 

 

ALTERNATIVELY 

For Kruskal-Wallis analysis, you use the crazy named Kruskal-Wallis-Nemenyi test. You need to load 

the PMCMR package (updated in January 2018 to PMCMRPlus): 

library(PMCMRplus) 

kwAllPairsNemenyiTest(Lifespan~Diet, dt) 

R Read-Out 

   A     B     C    

B  1.00  -     -    

C  0.61  0.65  -    

D  0.73  0.76  1.00 

 

So ‘A’ & ‘C’ are most different (p = 0.61), but no Diets are different from one-another significantly 
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Multi-Variable Tests 

Sometimes you want to measure the effect of more than one factor e.g. the lifespan of flies under 

different diets and temperatures. In this scenario you want to see whether there are independent 

effects of diet and temperature, but also whether there is an interaction between these variables on 

longevity (e.g. does Diet affect Lifespan differently at one temperature than it does at another). For 

this you can use a Two-Way ANOVA for normal data when dealing with categorical factors.     NB: 

Use ‘*’ to look at factor & interaction, and ‘:’ for just the interaction 

m1=aov(dt$Lifespan~dt$Diet*dt$Temperature) 

summary(m1) 

R Read-Out 

                    Df  Sum Sq   Mean Sq  F value   Pr(>F)     

Diet                 3    1515       505     0.776     0.507     

Temperature         2   43583     21791    33.516  1.24e-14 *** 

Diet:Temperature    6    1155       193     0.296     0.939     

Residuals          708  460328      650   

From these results, we can see that Temperature has a significant effect on Lifespan, but not Diet, 

nor the interaction between the two variables. 

 

Again, we can use Tuskey’s HSD to see the pairwise interactions: 

TukeyHSD(m1) 

R Read-Out 

$Diet 

           diff         lwr         upr       p adj 

B-A   0.3444444  -6.577009   7.265898  0.9992479 

C-A   3.3444444  -3.577009  10.265898  0.5988103 

D-A   2.7111111  -4.210343   9.632565  0.7444022 

C-B   3.0000000  -3.921454   9.921454  0.6796821 

D-B   2.3666667  -4.554787   9.288120  0.8149808 

D-C  -0.6333333  -7.554787   6.288120  0.9953930 

 

$Temperature 

             diff         lwr          upr       p adj 
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25-22  -12.200000  -17.66694   -6.733055  0.0000006 

28-22  -18.779167  -24.24611  -13.312222  0.0000000 

28-25   -6.579167  -12.04611   -1.112222  0.0134064 

 

$`Diet:Temperature` 

                  diff         lwr          upr       p adj 

B:22-A:22   1.5666667  -13.698624  16.83195707  1.0000000 

C:22-A:22   3.5833333  -11.681957  18.84862374 0.9998022 

D:22-A:22   0.9333333  -14.331957  16.19862374 1.0000000 

A:25-A:22 -12.7500000  -28.015290   2.51529040  0.2095667 

B:25-A:22 -14.4000000  -29.665290   0.86529040  0.0859197  

…   … …  …  … 

 

When you have non-parametric distributions, you can’t use Kruskal-Wallis as it only works on one-

way analysis. Ordinal Logistic Regressions are pretty bad as your response variable has to be 

categorical with >=2 levels… 

So use Generalised Linear Models (GLM)! 

 

GLMs are pretty much the same as a Linear Model as used above (i.e. in Regression analysis), but 

can use variables of different types (i.e. not just continuous variables).  

However, these models require you to know a little more about your data… 

If your data follows a Guassian distribution, you can use a Linear Model, but if it follows any other 

distribution (e.g. Poisson, binomial, etc. see this site for details), use a GLM, and specify the 

distribution in the formula (as below). NB: Requires the Package lmer4 

library(lme4) 

a=glm(Lifespan~Diet*Temperature, family=poisson, data=dt) 

summary(a) 

R Read-Out 

                       Estimate  Std. Error  z value   Pr(>|z|) 

(Intercept)          3.917342    0.018209  215.133   < 2e-16 

DietB                0.030691   0.025556    1.201    0.22977 

DietC                0.068860   0.025319    2.720    0.00653 

…  …  ….  …  … 

https://www.statmethods.net/advstats/glm.html
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Comparing the effects of multiple variables 

When you have 2 or more variables that affect your response variable (e.g. like Diet & Temperature), 

you will want to identify the impact of each of these variables independently, as well as whether any 

interactions exist between them. 

You get some indication of the impact of these elements individually from an ANOVA or a GLM (like 

in the example above, LINK), but a better way is to assess the difference in how Models Fit the data 

using an ANOVA. If you do this in a step-wise manner, you can identify whether including a variable 

in your test makes a significant difference to how the model fits the data or not, and thus whether it 

affects your response variable or not. This is known as a Partial F Statistic. Here’s a good video 

describing the process (Example 1 describes a Multiple Linear Regression, while Example 2 describes 

a Non-linear Regression of a single variable). 

NB: The Partial F Statsitic measure only works (i.e. gives you a significance value) with Linear 

Models (i.e. lm or lmer models, see below) and not Generalised Linear Models (i.e. glm or glmer 

models). 

model1 = lm(dt$Lifespan ~ dt$Diet + dt$Temperature) 

model2 = lm(dt$Lifespan ~ dt$Diet) 

anova(model1, model2) 

R Read-Out 

   Res.Df    RSS   Df  Sum of Sq       F     Pr(>F)     

1     714  461484                                  

2     716  505066  -2     -43583   33.715   1.02e-14 *** 

We can see from the Residual Sum Squares (RSS) [this is a value which indicates how far the 

model deviates from the data points, so a lower number is better], that the 1st model fits 

better (i.e. the one with temperature included) than the 2nd model (i.e. has a lower RSS 

value), and we see from the p value, that this difference is significant. Therefore, we can say 

that Temperature has a significant effect on Lifespan 

 

Mixed-Effects Models 

The word Mixed here means the inclusion of a Random Effect in your model, which just means you 

want to identify whether some variable in your data which you don’t intend on measuring or 

investigating affects your response variable significantly or not. 

This could be the age of the individual testes, the location the organisms are in the incubator, or the 

batch (e.g. Replicate) in which the samples were processed in. Including these as Random Effects in 

your model allow us to account for inherent lumpiness of data caused by such factors. Like ordinary 

GLMs, they require the package lme4 

If your data follows a Gaussian distribution, use a linear mixed model (lmer), otherwise, you can use 

a glmer, but be aware that Partial F Statistics won’t give a p value if comparing two glmer models. 

m1=lmer(Lifespan~Diet+Temperature+(1|Replicate), data=dt) 

https://www.youtube.com/watch?v=G_obrpV70QQ
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summary(m1) 

 

Again, we use Partial F Statistics to identify whether the variable has a significant effect: 

model1 = lmer(Lifespan~Diet+(1|Replicate), data=dt) 

model2 = lmer(Lifespan~Diet, data=dt) 

anova(model1, model2) 

R Read-Out 

Df   AIC    BIC   logLik   deviance  Chisq  Chi Df  Pr(>Chisq) 

2   4  6707 6725.3  -3349.5      6699                         

1   5  6709 6731.9  -3349.5      6699       0       1           1 

The difference between the models here is very small (AIC & BIC are values which indicate how well 

the model fits [lower is better], and they’re very similar between the models), and this is reflected in 

the p value (p = 1) which shows the Random Effect, Replicate, does not affect the data. 

 

NB: You can use: 

(1|Replicate) 

If you can assume the random effect is the same for every individual sample.  

Alternatively, if you have reason to believe the random effect might affect samples differently 

between the different levels of one of your variables, you can use the formula 

(Diet|Replicate) 
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Collating & Analysing Survival Data 

 

Configuring for Survival Analysis 

Say you have data in an Excel file like: 

 

To get it ready for R you have to configure it as so: 

 

You do this in Excel for each replicate, treatment and factor individually. The formula can be found in 

the ‘Survival Transformation Example.xls’ file.  

Once you have transformed each of your replicates like above, collate them with the appropriate 

information. Before you save the file, you have to DELETE the first data column (column E in this 

example) as it is just a list of the days survival was recorded. Once this has been done you can save 

the file as a .csv called “Survival Data for R.csv”. 

 

 

 

Once in this format you can use a function made by the fantastic Dr Weihao Zhang to transpose it in 

R: 
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Weihao’s Script for Transposing Survival Data 

raw=read.csv("Survival Data for R.csv") 

# make function 

make.rm<-function(constant,repeated,data,contrasts) { 

 if(!missing(constant) && is.vector(constant)) { 

  if(!missing(repeated) && is.vector(repeated)) { 

   if(!missing(data)) { 

    dd<-dim(data) 

    replen<-length(repeated) 

    if(missing(contrasts)) 

     contrasts<- 

      ordered(sapply(paste("T",1:length(repeated),sep=""),rep,dd[1])) 

    else 

     contrasts<-matrix(sapply(contrasts,rep,dd[1]),ncol=dim(contrasts)[2]) 

    if(length(constant) == 1) cons.col<-rep(data[,constant],replen) 

    else cons.col<-lapply(data[,constant],rep,replen) 

    new.df<-data.frame(cons.col, 

     repdat=as.vector(data.matrix(data[,repeated])), 

     contrasts) 

    return(new.df) 

   } 

  } 

 } 

 cat("Usage: make.rm(constant, repeated, data [, contrasts])\n") 

 cat("\tWhere 'constant' is a vector of indices of non-repeated data and\n"

) 

 cat("\t'repeated' is a vector of indices of the repeated measures data.\n"

) 

} 

dt=make.rm(1:4, 5:112, raw) # **CHANGE THESE!!!!!!** 

dt.no.NAs=dt[complete.cases(dt),] 

write.csv(dt.no.NAs,file = "Transposed survival data.csv", row.names = FALS

E) 

** Change highlighted numbers depending on how many category (e.g. Genotype, Diet, Death etc.) 

and data columns (i.e. days lifespan was recorded) you have in your data set. 

Delete ‘contrasts’ column and change 'repdat' to 'Lifespan' in the ‘Transposed survival data’ file, save 

it (again as a .csv file) & it’s ready for analysis!  
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Analysing Survival Data 

Once you have your data in R, there are a number of ways you can analyse your data 

Load data 

dt=read.csv(“Survivals.csv”) 

Load (or install, then load) survival package 

library(survival) 

 

You want to have a general look at the data to see if there are any immediate differences (i.e. mean 

lifespan with standard errors). 

You first have to create a formula for the standard error calculation. 

Thankfully the brilliant Dr Weihao Zhang also made a function for this called se: 

se=function(x) sqrt(var(x,na.rm=T)/(length(x)-length(which(is.na(x))))) 

 

So subset the data as you wish and work out the means & se for Lifespan: 

dti=subset(dt, Dose!="PBS") 

tapply(dti$Lifespan, list(dti$Genotype, dti$Dose), mean) 

se=function(x) sqrt(var(x,na.rm=T)/(length(x)-length(which(is.na(x))))) 

tapply(dti$Lifespan, list(dti$Genotype, dti$Dose), se)) 

               High        Low 

+/TotM    7.680851  8.140000 

tub/TotM  7.604167  8.115385 

                High        Low 

+/TotM    0.2528403  0.292784 

tub/TotM  0.1900438  0.280935 

So not much difference in the means between the Genotypes… 

You can test these statistically using a Wilcox test (lifespan data isn’t normally distributed) 

wilcox.test(dtl$Lifespan ~ dtl$Genotype) 

W = 863.5, p-value = 0.4037 

wilcox.test(dth$Lifespan ~ dth$Genotype) 

W = 798.5, p-value = 0.2855  
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Model Analysis 

Now because I have infection data in this example, there’s not much point in me doing complex 

analysis on survival curves using model fitting, as the survivals crash, so I will use the Cox Hazard 

Proportion model. I will use the dti data set to see if there’s a Genotype effect: 

First load/install the Survival package which contains the coxph() function 

library(“survival”) 

coxph(Surv(Lifespan, Death)~Genotype,dti) 

coxph(formula = Surv(Lifespan, Death) ~ Genotype, data = dti) 

                      coef  exp(coef)  se(coef)     z     p 

Genotype tub/TotM  0.0401     1.04     0.143   0.28  0.78 

Likelihood ratio test=0.08  on 1 df, p=0.779  n= 197, number of events= 197 

 

Nope, doesn’t look like it… 

What about a Genotype:Dose interaction? 

m1<-coxph(Surv(Lifespan, Death)~Genotype*Dose,dti) 

m2<-update(m1,~.- Genotype:Dose ) 

anova(m1,m2) 

Cox model: response is Surv(Lifespan, Death) 

Model 1: ~ Genotype * Dose 

Model 2: ~ Genotype + Dose 

loglik    Chisq   Df  P(>|Chi|) 

1  -841.03                     

2  -841.74  1.4183    1     0.2337 

 

Nope, no interaction either 

 

Plotting Cox HP 

Say I wanted to make a graph of the Cox HP results. 

Let’s go back to our Genotype results: 

                      coef  exp(coef)  se(coef)     z     p 

Genotype tub/TotM  0.0401     1.04     0.143   0.28  0.78 
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Here the exp(coef) is the hazard proportion relative to the first genotype assessed, which in this case 

is +/TotM, the control Genotype. (Subsets are processed in alphabetical order, so the subset you 

want to relate everything to has to alphabetically come first, thankfully ‘+’ comes before all letters!). 

The se(coef) is the standard error of the coefficient, although I think if your exp(coef) is >1, you have 

to multiply the se(coef) by the exp(coef) to get the true standard error. 

I would put these values into a new .csv file and plot them using the Plotrix package: 

dt=read.csv("Surv Fig.csv") 

attach(dt) 

library(plotrix) # or install first! 

par(mar=c(5, 5, 4, 2)) 

This sets the position of graph in space, best not to touch! 

plotCI(x=c(1.5), 1.041, uiw=0.142, liw=0.142, col=c('grey80'), lwd=2, pch=1

6, err="y", xaxt="n", xlab="TotM RNAi", ylab="Hazard Ratio", main="Hazard P

roportions of Treated Flies", cex.main=2, cex.lab=1.5, ylim=c(0.8, 1.2), xl

im=c(1,2)) 

 

Lots of stuff in this line... uiw & liw are the error limits, pch is the point type, etc. 

abline(h=1, col=1, lty=2, lwd=2) 

 

This adds an additional line in, h=1 means that it's horizontal and is at 1, col is the colour, lty is line 

type, and lwd is line width 
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Or if using more data points 

Make a .csv file of CoxHP data: 

 

attach(dt) 

par(mar=c(5, 5, 4, 2)) #sets position of graph in space 

plotCI(x=c(1.5, 2, 3, 3.5), Mean, uiw=SE, liw=SE, col=c('black', 'black', '

grey65', 'grey65'), lwd=2, pch=16, err="y", xaxt="n", xlab="Dif                

Rel", ylab="Hazard Ratio", main="Hazard Proportions of Treated Flies", cex.

main=2, cex.lab=1.5, ylim=c(0.4, 1.4), xlim=c(1, 4)) 

# Lots of stuff in this line... uiw & liw are the error limits, pch is the 

point type, etc. 

chp<-as.character(dt[[2]]) # stating which column in csv file to put as x a

xis 

axis(side=1,at=c(1.5, 2, 3, 3.5), labels=chp, cex.axis=1) # stating space o

f axis, axis labels, cex.axis describes axis font size 

abline(h=1, col=1, lty=2, lwd=2) # adds an additional line in, h=1 means th

at it's horizontal and is at 1, col is the colour, lty is line type, and lw

d is line width 

 


